
Application Design Document

MGMapViewer

19.01.2021 MGMapViewer Martin Gröger
Ed. 0.9.5 pre 02 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Table of Contents
1 Introduction...4
2 Architectural Overview...5
3 Components of the MGMapViewer..7

3.1 MGMapApplication..7
3.2 MGMapActivity..7

3.2.1 View model of MGMapActivity..8
3.2.2 Software structure of MGMapActivity..9
3.2.3 Feature Services...11

3.3 SettingsActivity...12
3.4 TrackStatisticActivity..13
3.5 ThemeSettings activity..13
3.6 HeightProfileActivity..13
3.7 TrackLoggerService..13
3.8 BgJobService...14

4 Common Models and Techniques...15
4.1 TrackLog Model..15
4.2 Graph...16
4.3 Preference Handling with PrefCache and Pref<>...17
4.4 ExtendedTextView..18

2/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

1 Introduction
This document is considered as the application design document for the Android app MGMapViewer. It
tries to summarize information about this app, which are relevant in the development process. These
information concern architectural aspects of the app and also patterns that were used to ensure a
consistent code structure throughout the whole app.

Chapter 2 gives on overview over the top level components of the app. Chapter 3 contains a subchapter
for each top level component that describes the most relevant aspects from development point of view.
Finally chapter 4 introduces in more detail the common models and some techniques that were used in
the whole app.

4/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

2 Architectural Overview
This chapter tries to give a rough overview about the app architecture of MGMapViewer.

This figure reflects the main items of the app as listed in the Android Manifest file.

The application MGMapApplication provides the basis for this app. Especially it provides the ability to
manage a set of TrackLog instances and to register observer on them. Secondly, it provides via the
BgJobService the option to execute long running jobs in the background.

Beside the application that is given with the MGMapApplication class there are five activities:

• MGMapActivity: This is the main activity and by far the most important one. It’s contains
◦ all kinds of map visualisation
◦ all track visualisations,
◦ status information (dashboard, status line)
◦ quick controls (menus, menu items)

• SettingsActivity: Provides multiple preference screens for settings, to trigger actions an
◦ adjust application settings
◦ trigger downloads (maps & software)
◦ provide information and link to documentation

• TrackStatisticActivity: A table with some basic information about all tracks that are known to
the application. It allows to trigger some actions like view, save, delete, share of a selected
subset of tracks. A filter can be applied.

• ThemeSettings: Provides an extra preference screen for adjusting all settings that are part of the
mapsforge themes.

• HeightProfileActivity: This activity provides height profiles for some tracks.

• FileManagerActivity: Allows to rename, view, share, receive via share, delete files in the
private storage path of the app.

5/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Figure 1: Architectural Overview of MGMapApplication

Beside the activities there are two services defined via the manifest:

• TrackLoggerServices: This service is the basis for three background task:

◦ GNSS location service as needed for track recording
◦ pressure sensor service as needed for altitude calculation
◦ TextToSpeach service as needed for turning instructions

• BgJobService: This is a general purpose background job service, use e.g. for

◦ Download jobs for map files and themes
◦ Download jobs of tiles for TileStores
◦ Down- and Upload jobs of gpx track to GDrive

6/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3 Components of the MGMapViewer

3.1 MGMapApplication
The application context provides following data:

• lastPositionsObservable
Provide current position for direct access and as observable.

• availableTrackLogsObservable
Provide selected track and multiple available tracks for direct access and as observable. For the
selected track there is a TrackLogRef used that enables to point on a particular segment of the
track.

• recordingTrackLogObservable
Provide recording track log for direct access and as observable.

• markerTrackLogObservable
Provide marker track log for direct access and as observable.

• routeTrackLogObservable
Provide route track log for direct access and as observable.

The onCreate callback starts a couple of Threads:
• Recover recordingTrackLog state from persistent storage, set GPS state depending on recovered

recordingTrackLog state (finish after initialization)
• Synchronize .gpx files to .meta files, load meta file data to TrackLog objects, which provide fast

access on most track properties without parsing the xml of the gpx. Finish after initialization.
• Start a Thread to handle new TrackLog points, runs permanently.
• Start logging supervision thread. The app is starting right at the beginning a logcat process for

recording of log entries in logfiles. Since this separate process might be killed by Android, this
thread checks the log process and if killed, it restarts it. This thread runs also permanently.

Beside providing access to the observables and the startup functionality there is on more thing:
MGMapApplication provides access to the BgJobService. BgJob instances can be submitted to the job
queue. If not yet running, the application starts the BgJobService. This is related to an Android
notification with the number of not yet started BgJob instance waiting in the queue.

3.2 MGMapActivity

This is the main activity of the app. It provides map and track viewing capabilities. It’s running fix in
portrait mode. The first subchapter will introduce the architecture of views, as they all together
compose what we see in this activity. The second subchapter will describe the software structure of the
MGMapActivity. Since most of the functionality of this app is related to this activity, the code is
structured in multiple features, which are tried to be implemented rather independent, mostly in so
called FeatureServices. The third subchapter will point out some of the Feature services in more detail.

7/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3.2.1 View model of MGMapActivity

8/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Figure 2: View Model

The views are splitted into two main groups:

1. MapView based view elements. The MapView is the central view object as provided by the
mapsforge project. It allows to show multiple map layers. Independent on the fact that they
show a whole map ore just a small circle of a point, they all have a strong relationship to a
geographical position, so moving the viewed position will move all these objects together.
There are also a few control layers with direct relationship to the corresponding view objects.

2. ControlView based view elements. These views provide additional information, either in textual
form or as drawable icons. These view elements are also used to provide most of the control
functionality of this activity. All these view elements have no relationship to the currently visual
geographic position, so moving the map will not affect them.

3.2.2 Software structure of MGMapActivity

The MGMapActivity is using a MapViewerBase class as its parent. This class tries (together with the
MapViewUtility) to encapsulate most MapView related topics. Again it’s worth to mention that the
viewing capabilities for maps are mostly provided by the mapsforge software1 that is used in this
activity. So rather at the beginning of the onCreate() method the MapView will be initialized and also
the map layers will be created.

The additional functionality provided by MGMapActivity requires a none trivial amount of code.
Therefore the code is structured in features, which operate rather independent on each other. Most of
these features have a similar structure with following functionality

• provide some controls to trigger an action,
• trigger or do some action in background
• provide some status information (either as text or as drawable icon)
• use observes to refresh the status information on demand

Therefore a base class FeatureServices was introduced that provides common functionality, e.g. access
to the MGMapActivity, MGMapApplication and some other classes. It enables also to bind these
features to the lifecycle of the activity. So the onResume() and onPause() calls are forwarded to the
feature services.

Each instance of a feature service includes by default an refreshObserver, which can be used to register
it to relevant observables. Once an update is triggered by these observables, the refreshObserver
triggers after a short timeout a doRefresh() method. The default implementation checks the activity
state an if it is resumed it calls doRefreshResumed(). And also this method has a default
implementation: it executes on the UI Thread the method doRefreshResumedUI(). For most feature
services this is very convenient, since they have to do some updates only in RESUMED state on the UI.

All feature services are created in MGMapActivity onCreate() method. MGMapActivity manages a list
of these feature services and provides a generic method to identify such a service if needed.
Nevertheless, to realize mostly independent services this option is rarely used.

1 There are some functional enhancements as well as some fixes which were provided to the mapsforge project as pull
requests.

9/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Once the feature services are created, the ControlView is setup. The features should not now details
about the control view layout. The control view class provides helper methods to setup all kinds of
buttons, seek bars and other views for dashboard, status line and quick controls, but this code should
not be mixed up with functional aspects of the features. Therefore an extra class ControlComposer is
created. For most control components it call a helper method from control view to create it and assign it
to its parent. The resulting component is given to an initXYZ() call of the feature service that shall
provide a certain functionality to this view, so e.g.

initStatusLine(coView.createStatusLineETV(parent, 20), "height")

The “coView.createStatusLineETV(parent, 20)” call creates the status line view object, which is
given with the info “height” to the initStatusLine method of the FSPosition feature service. This
feature service will update this view in its doRefreshResumedUI method according to the
current state.

Similar to the initStatusLine method there are
• initDashboard
• initLabeledSlider
• initQuickControl

methods to setup the whole bunch of control view elements. The ControlComposer is the
central place where the controls and it’s functionality are linked together. Once the control
view setup is done, the onCreate method of the MGMapActivity is finished.

The onResume() method forwards this to all feature services to enable them to react on this
event. Additionally it triggers (via changed method) a couple of the applications observables.
So all observers of them can recalculate and visualize the current state.

Similar the onPause() method mainly propagates this event to the feature services, which
may react on it.

Finally the onDestroy() method is doing some clean-up stuff. Be aware that there are some
Settings, especially from the MapView, which require a recreate of the activity to become
effective. So not only Android may destroy the activity to free some resources, also the
SettingsActivity can trigger this lifecycle changes.

Beside the already explained stuff there are a few more aspects worth to be mentioned:
• MGMapActivity is registered for a few intents:

◦ uri scheme "mf-v4-map" for map download
◦ uri scheme "mf-theme" for theme download
◦ uri scheme "mgmap-install" for download and install zip-Archives

(e.g. used to install map sample configurations)
◦ uri scheme "geo" to open geo location intents
◦ uri scheme "content" with mime type "application/gpx" (and some othe types) to

open tracks directly from other apps
◦ intent type "mgmap/showTrack" to show tracks as selected in TrackStatisticActivity
◦ intent type "mgmap/markTrack" to open the selected track in TrackStatisticActivity as

marker track

10/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

• MGMapActivity starts/stops depending on the required GPS state the
TrackLoggerService. It takes care about requesting the necessary permissions, if not
yet available.

• MGMapActivity provides XmlRenderTheme as used for mapsforge maps

• MGMapViewer creates a controls layer in the MapView, which enables
◦ on single tap: set a track as “selected”
◦ on long tap: toggle gain/loss mode for

▪ recordingTrackLog,
▪ selectedTrackLog and
▪ routeTrackLog.

3.2.3 Feature Services

The following table gives an overview on all feature services and tries list dependencies, especially in
terms of preferences.

Feature Service Function of Feature Service Dependencies

FSAlpha Provides transparency controls for map
layers and for all kinds of tracks

FSATL.STL_visibility
FSATL.ATL_visibility
FSMarker.MTL_visibility
FSRecording.RTL_visibility
(for visibility of corresponding seek bars)

FSAvailableTrackLogs Visualisation of available tracks and
selected track (incl dashboard)

FSMarker.MTL_visibility
(for “hide all” visibility)

FSBeeline Visualisation of beeline between map
center and current GNSS position;
Statusline fields: beeline distance to center
and zoom level

FSPosition.GpsOn
(determine current GPS position)
FSPosition.ZoomLevel
MapViewPosition
(determine current map center position)

FSControl Provides controls for all external triggered
actions and activities;
quick control menu handling incl. help

FSGraphDetails Developer Function: Show details of a
GTileGraph; highlight close way

FSMarker Show MarkerTrackLog incl dashboard,
provide controls for it

FSATL.hideAll
(to hide MTL)

FSPosition Visualize current position;
center map on current position (depends on
settings)

MGMapApplication.Restart
(to set Center position to default “on”)

FSRemainings Visualisation for statusline field remainings
with remainings value from STL

FSPosition.GpsOn
(determine current GPS position)

FSRouting Calculation and visualisation (incl
dashboard) of basic route depending on
MarkerTrackLog

FSMarker
(to inject FSMarker.LineRefProvider
for control of route)
FSGrad.wayDetails and

11/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

FSBeeline.ZoomLevel
(to switch visibility of relaxed nodes and
Approaches)
FSMarker.EditMarkerTrack
(toggle direct routing only if switched on)
FSPosition.GpsOn
(precondition for Routing hints;
base for RouteTrackLog remainings statistic in
dashboard)
FSMarker.autoMarkerSwitcher
FSMarker.autoMarkerSettings
(snap2way and alphaRoTL depend on both)
FSMarker.alphaMTL
(visualize MTL points as part of route, if low
visibility from MTL)
FSMarker.MTL_visibility
(RoutingHints and MapMatching ability
depends on it)

FSRecordingTrackLog Manage and visualize (incl dashboard) the
RecordingTrackLog

FSPosition.GpsOn
(will be set on start/sop track record)

FSSearch Provide Geocode search function and also
reverse search

FSTime Provide statusline field: Time

3.3 SettingsActivity

The settings activity provides a couple of preference screens, which are rather independent. The
SettingsActivity allows to specify the desired preference screen class via intent. Currently this is used
for following preference screens:

• MainPreferenceScreen
• DownloadPreferenceScreen

Changes on settings take effect via shared preferences. Typical usages are ListPreferences and
SwitchPreferences, but it can also be done via OnClickListener. Depending on the particular setting the
value of the setting can be obtained directly or there might be a listener registered for this particular
preference. The app provides for this purpose an add on to the OnSharedPreferenceChangeListener (for
details see chapter 4.3)

Furthermore there are multiple settings that are linked with an OnClickListener to a browse intent,
opening a defined URL as the result of a click. This is used e.g. for all the download topics as well as
for the documentation on github.io.

12/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3.4 TrackStatisticActivity
The track statistic activity is the beside the MGMapViewer activity the most complex one. It provides a
table with TrackStatisticEntry instances, where each known TrackLog is represented by one entry.

The TrackStatisticActivity contains a set of quick controls with the main difference, that these quick
controls are rather trigger direct actions (in opposite to the menu quick controls of MGMapActivity).
The creation and assignment of functionality works similar to the main activity.

Since the number of TrackLog objects might be high, a RecyclerView is used to visualize them. This
prevents a significant delay during startup, even in case of several hundred TrackLog objects.

The other functionality is related to the quick controls and their enable-states. The quick controls allow
a generic approach to view, save, delete, share and open them as marker track.

3.5 ThemeSettings activity
The ThemeSettings activity works almost exactly in the way as the mapsforge sample code suggest its
usage. There is just a preference added to simply detect relevant changes in the settings. This is
necessary to be able to recreate the MapView, which means to recreate MGMapActivity.

3.6 HeightProfileActivity
The HeightProfile activity is reusing a code package com.jjoe64.graphview that support visualisation of
any kind of chart graph for Android. Here it is used for the height profile and (if switched on) for the
ascent profile. These profiles can be shown for the SelectedTrackLog, the RecordingTrackLog and the
RouteTrackLog.

For the ascent profile there is some smoothing function implemented. Nevertheless it often looks like a
recording from a seismograph, if an earthquake occurs. So right now the usability is limited.

3.7 FileManagerActivity
The FileManagerActivity is created as a rection on the Google policy to restrict more and more the
access to app directories. This started with Android 10 and now (with Android 14) even the
development tools do not provide necessary access anymore.

Remarkable aspekt: Even in the “adb shell” the “ls /sdcard/Android/data” doesn’t show any app
data. But a “cd <packageName>” (so e.g. “cd de.sof4mg.mgmap.rel” or cd “mg.mgmap”) is successful.

To enable an easy way to transfer files (maps, configuration, tracks, …) to and from the app directory,
this FileManagerActivity is created. It’s using the “appDir” of the PersistencyManager as the root. This
corresponds to the total path “/sdcard/Android/data/<packageName>/files/MGMapViewer”.

FileManagerActivity allows to navigate below this entry point. Again a set of quick controls enables
multiple actions (browse, rename, share, receive via share, delete) on files. The browse action depends
on a preference, whether to prefer the internal tiny editor or an external editor app for small text files.

The receive via share allows first to select the target directory and then to use the “save” to finally get
the files in the desired place.

13/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3.8 TrackLoggerService
The TrackLoggerService is the backbone of the recording capabilities. It has to run independent on the
activities and their visibility. Once the recording is switched on, then this service shall not be
interrupted for more then a few seconds. Android should not push it into background, executing only in
long intervals and it should not terminate it for whatever reason!

There are some security and power consumption aspects related to this service – the following table
tries to summarize them:
Aspect From

API-Level
Description

permission required:
ACCESS_FINE_LOCATION

1 For permission is required to register a LocationListener
on Androids LocationManager.

Notification required 26 The service has to provide a notification that it is
running a foreground service (to make this very clear to
the user)

Start Intent with
startForegroundService

26 Android tries to distinguish between services which can
run from time to time and “foreground” services which
can run more often, but should not use too much time.

permission required:
FOREGROUND_SERVICE

28 Additionally the app should claim to run foreground
services already in the Manifest.

permission required:
ACCESS_BACKGROUND_LOCATION

29 This new permission is required to distinguish for users
between the allowing location access in foreground and
in background.

permission required:
REQUEST_IGNORE_BATTERY_OPTI
MIZATIONS

(33) If this service is used, then the app tries to triggered the
intent action
Settings.ACTION_REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
to prevent battery optimization for this app.

permission required:
FOREGROUND_SERVICE_LOCATION

34 The startForeground has to pass a type of service:
ServiceInfo.FOREGROUND_SERVICE_TYPE_LOCATION
This requires to declare the permission upfront.

Beside the pure location information the TrackLoggerServices tries to enrich this information with
height data. This is done with .hgt height data files, if available. But it is also done with pressure
information, if the device supports a pressure sensor. From that pressure information it is possible to
derive a much more precise delta height information than form .hgt data or even from the GNSS data.

There is a third task running in the scope of this service: If there is a RouteTrackLog available and if
the setting “turning instructions” is switched on, then the output of those turning instructions is (via
TextToSpeach) directly triggered with each new location.

14/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

3.9 BgJobService
The BgJobService provides a generic interface to run jobs in background. Initially it was introduced to
manage the download of tiles to an offline tile store. Then this service extended, so the current list of
usage scenarios is:

• Download of mapsforge maps
• Download of mapsforge theme
• Download jobs of TileStoreLoader
• Drop jobs for TileStoreLoader
• Download job for software update

There is a ThreadPool of up to 8 Threads executing these jobs.

15/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

4 Common Models and Techniques
This chapter gives a more detailed view on some important topics.

4.1 TrackLog Model
The following class diagram shows the relationship of the elements of mg.mgmap.model package:

It’s worth to mention that the core implementation of a point stores the latitude an d the longitude value
as an integer value. This is done in microdegree, which provides a granularity of roughly 10cm. The
core advantage is that processing inaccuracy is not really a problem, comparison is much easier.

This type of model is not only used for the internal storage of an track, but also for all view models.
This is significant difference to the mapsforge examples, which use LatLong[] arrays where each
LatLong instance keeps double values for latitude and longitude. So finally these model elements are
passed directly to the views, there is no need to pass extra model objects to the views.

16/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Figure 3: TrackLog model

4.2 Graph
As described in the basic routing feature there is the option to find the shortest path between given
points on the map. To do this there is the need to generate a graph from the given model. Obviously this
is only possible for a vector map like mapsforge and not for pure graphical maps given via online or
offline tile stores.

The PointModel and PointModelImpl classes (as seen in previous chapter) are not only the base for the
TrackLog instances, but also for the graph modelling. The current realisation is based on tiles at zoom
level 15. In terms of mapsforge map definition: All “ways” with the tag “highway” are taken into
account. All of them are taken to setup the graph.

17/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

Figure 4: graph model

Since the ways stored in the map are not clipped at the tile border, they are overlapping at neighbour
tiles. In fact the overlapping part has often even no common point, which makes it hard to setup a
graph. So first step is to clip all ways at the tile borders. But even inside of tiles, there are sometimes
“strange” data. E.g. if you look at the map, you see a crossing, where one path is ending on another
one. If you zoom in to highest level, you might notice some inaccuracies. From a point of data, there
are points with only a few microdegree distance. Without extra handling the graph considers two point
as not connected, if they have only 1 microdegree distance (and if there is no defined way for this). In
real life it’s hart to imagine that there are points with a distance of about 10cm and you cannot pass
from one to the other. So in a first step there is a postprocessing of tile data to connect such kind of
points.

Since route calculations often need more than one tile there is a procedure to setup a graph from
multiple tiles, a GGraphMulti instance. The main effort is to connect multiple tiles at their borders.
Again here we need a algorithm, which works even if the ways at the tile borders doesn’t fit exactly
together.

Since the required tiles for a GGraphMulti often differ from one request to the next, the GGraphMulti
is recalculated for each route. On the other hand some of the tiles are needed usually for multiple route
calculations. Therefore the GGraphTile contains a LinkedHashMap that acts as a cache for the
GGraphTile instances.

Since all results form the route calculation process based on GNode (so in fact on PointModel), they
can easily passed to the view objects.

4.3 Preference Handling with PrefCache and Pref<>
Despite modelling of track information the app need to keep some information about current settings
and states. Android provides to the option to store such information in shared preferences. This option
is also used from the mapsforge sample software for its settings, but also to remember the theme
settings. To obtain changes on the shared preferences the is an OnSharedPreferenceChangeListener. So
this approach has two limitations:

• there is no option to register a change listener on a specific preference key
• there is no option to trigger a registered listener without changing the value.

E.g. for the fullscreen mode it is necessary after a search action to verify, whether the app is still in the
mode which is currently stored in the preference. But with the normal preference handling I can trigger
the observer only via a change of the value. Of cause I can find workarounds for this behaviour, but it
would be nice to have a direct option for this.

Therefore the util package contains two classes: Pref<T> and PrefCache. PrefCache works as the name
suggests as a cache for preferences. The scope of a PrefCache instance is a context, so each activity is
using its own PrefCache. Once the activity is destroyed, the PrefCache will be garbage collected, no
memory leaks will remain. The PrefCache will register an OnSharedPreferenceChangeListener and
once the onSharedPreferenceChanged is call, this call will be passed to the corresponding Pref<>, if
there is an instances with this preference key.

18/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

The class Pref<T> is a generic class that accepts Boolean, Integer, Float, String and Long for T. This
limitation is related to the corresponding methods of shared preference. Pref<T> extends Observable,
so it’s easy to register any Observer on it. Furthermore it implements OnClickListener and
OnLongClickListener with acts as default implementation with type Boolean. For those preferences
both click listener toggle the state.

Instances of Pref<T> can be used for internal states (like e.g. fullscreen mode), which is relevant for
multiple activities and which shall be unchanged even if the activity was destroyed for any reason. But
this class can also be used for “local” preferences in a limited scope. If they are instantiated without
explicit key, then they get a random UUID value as key and the are neither stored in the PrefCache nor
in the SharedPreferences at all. They can be used e.g. inside a FeatureServices as long as it is running.

4.4 ExtendedTextView
The ExtendedTextView class is used frequently inside the app. It provides the ability to show an icon
and or a text.

If an instance of ExtendedTextView is used to show text, then a Formatter will be passed that is able to
format a given value in a proper String. So the typically a feature service has to set a new text as the
result of some operation. With the Formatter the business logic of the feature service can simply use the
setValue method without the need to care about representation.

Beside the visualisation of text, the ExtendedTextView allows to show an icon. This can be an
additional icon (e.g. as with the length value in the dashboard), but it can also be an icon for its own
(e.g. the quick controls). If an icon is shown, then this might be fix for this view, but it can also depend
on up to two Pref<Boolean> instances, so it can show up to four states with four different icons.

And there is even one more thing: At least some of the views shall act as button, so they can configure
one or two Pref<Boolean> action preferences. In this case the first on is toggled with a
OnClickListener and the second one with an OnLongClickListener.

There are case, where one preference (e.g. prefSearchOn) is used as action preference and as state
preference in an ExtendedTextView. So it changes its state due to the click and the view icon will be
changed due to this. The business logic of the FSSearch is also trigger as an observer on this
preference.

On the other hand there are more complex cases like starting a track recording. The quick control to
start track recording needs an action preference to trigger the business logic. Due to this processing the
GPS will be switched on and as the result of all the precessing the state of another preference will
change, and this is related to the new icon for this view.

19/19 MGMapViewer Martin Gröger
Ed. 0.9.7-19.0 https://github.com/mg4gh/MGMapViewer mg4gh@web.de

	1 Introduction
	2 Architectural Overview
	3 Components of the MGMapViewer
	3.1 MGMapApplication
	3.2 MGMapActivity
	3.2.1 View model of MGMapActivity
	3.2.2 Software structure of MGMapActivity
	3.2.3 Feature Services

	3.3 SettingsActivity
	3.4 TrackStatisticActivity
	3.5 ThemeSettings activity
	3.6 HeightProfileActivity
	3.7 FileManagerActivity
	3.8 TrackLoggerService
	3.9 BgJobService

	4 Common Models and Techniques
	4.1 TrackLog Model
	4.2 Graph
	4.3 Preference Handling with PrefCache and Pref<>
	4.4 ExtendedTextView

